

THE GEOGRAPHY OF SUSTAINABILITY: Agglomeration, Global Economy and Environment

GRAZI, F.,* H. WAISMAN,* J.C.J.M. VAN DEN BERGH#

* CIRED, Paris France # ICREA and AUB, Barcelona, Spain

Motivation of the research

Lack of knowledge

Sustainable development -> spatial dimension ?

Regional analyses -> Environmental consequences of location choices by agents and activities ?

Objectives To contribute to the New Economic Geography (NEG) literature: Coupling Pollution and Spatial dynamics

1.

- 2. To provide the so-far abstract concept of 'Spatial Sustainability' with analytical formalization
- 3. To pave the way for numerical testing of the sustainability indicator

Focus of the research

Research questions:

- 1. To what extent the economy's spatial structure matters to the sustainability debate?
- 2. How the drivers of spatial sustainability can be embedded in a general equilibrium framework to analyze their welfare-offsetting effects?

The Method

Extending the 2-region CP model (Krugman, 1991):

Different spatial configurations

Spatial Sustainability Drivers:

- \rightarrow agglomeration spillovers
- \rightarrow environmental externalities
- \rightarrow trade advantages

Dynamics of migration and pollution

The Method (1): The Spatial Economy

• The economy:

Two regions, Two final good sectors (Food, Manufacturing), Two types of workers (Skilled and Unskilled) + One intermediate good (Energy)

Spatial dimension

3 land-use types

 \rightarrow Agriculture, Urban activities, Non-Productive land

2 types of spatial organization

 \rightarrow Urbanized: high density settlements

 \rightarrow Undeveloped: low density settlements

□ 3 alternative spatial configurations

Spatial configurations

The Method (2): The spatial sustainability drivers

Trade : trade barrier in the "iceberg" form ($\phi = 1$: free trade; $\phi = 0$: autarky)

Agglomeration spillovers $\underline{PC} = \underline{FC} + \beta_j \psi(n_j) q_j$

Production Fixed Costs Costs

Energy Costs per unit of prod

- *"market density" effect* β_i : degree of infrastructure development, spatial organization
- *"market size effect"* $\psi(n_i)$: intra-industry transaction costs, \succ technological spillovers and knowledge sharing

Pollution (from production and trade):

- **Flow effect** : affects negatively local utility $E_{\mu}(h, \phi)$
- Stock effect: accumulates over time to build a LT global pollution stock $S(h, \phi)$

The Method (3): The dynamic mechanisms

1. Migration of skilled workers (h=H₁/H)

> Driven by indirect utility gap $\Omega = V_1 - V_2$ (including agglomeration spillovers and pollution)

$$\frac{dh}{dt} = \begin{cases} \Omega(h,\phi) & \text{if } 0 < h < 1\\ \max(0,\Omega(h,\phi)) & \text{if } h = 0\\ \min(0,\Omega(h,\phi)) & \text{if } h = 1 \end{cases}$$

- 2. Pollution stock accumulation
 - Driven by emission flows $E(h,\phi)$
 - Assimilation capacity A

$$\frac{dS}{dt} = E(h,\phi) - A$$

Formalizing spatial sustainability

1.No incentive for migration: $\frac{dh}{dt} = 0$

2.Non-increasing pollution stock:

 $E(h,\phi) \le A$

Results: a 3-step analysis

1.Long-run spatial equilibrium

How the spatial economy develops in the LR for the different spatial configurations?

Results (1) Long-run spatial equilibrium

Symmetric configurations

A stable partial equilibrium exists for any trade barrier

Non-symmetric configuration

- For high trade barrier, two stable partial equilibria exist.
- For low trade barrier, stable partial agglomeration in urbanized region.

Results: a 3-step analysis

1.Long-run spatial equilibrium

2.Policy analysis of spatial sustainability
> Under what conditions the LR equilibrium reached by the spatial economy is sustainable?

Policy analysis: Trade, Space and Sustainability

Two types of policy measures (Physical) Trade regulation \rightarrow Trade barrier : $0 \le \phi \le 1$ ($\phi = 1$: free trade ; $\phi = 0$: autarky) Spatial planning \rightarrow Spatial concentration (3 spatial configurations) **Condition on sustainability** : $E(h,\phi) \le A$ Assimilation capacity of the environment (A)

What is the combination of policy measures that lowers long-run emissions wrt given assimilation capacity A ?

Results (2) Trade and sustainability

Trade barrier and assimilation capacity A
Trade barrier and spatial configuration

Results: a 3-step analysis

- 1.Long-run spatial equilibrium
- 2. Policy analysis of spatial sustainability

3. Welfare analysis

How sustainable LR equilibrium are rewarded in terms of welfare?

Results (3) Welfare analysis

What is the socially optimum configuration according to the assimilation capacity?

Results (3) Welfare analysis

□ For high assimilation capacity, configuration B is the most desirable

➢ intense agglomeration spillovers

□ For intermediate assimilation capacity, configuration A is the most desirable

Iower trade barrier imposed by sustainability.

□ For low assimilation capacity, configuration C is the most desirable

high trade barrier: pollution essentially from production

balanced configuration btw. agglomeration spillovers and emissions

Conclusions

- Importance of coupling spatial and environmental dimensions in a welfare analysis to formalize spatial sustainability
- More thorough comprehension of the sustainability mechanisms : interaction between three drivers (trade, environment and space)
- Respective role of policy instruments on trade vs. local spatial organization

Conclusions

For high assimilation capacity, the more urbanized spatial organization (config. B) is the most desirable

For low assimilation capacity, a more balanced configuration (config. C) is more rewarded in terms of welfare

Questions or Comments?

Contact : Fabio GRAZI - <u>grazi@centre-cired.fr</u> Henri WAISMAN - <u>waisman@centre-cired.fr</u>

Web: www.centre-cired.fr