

IMACLIM-R France: Focus on Heating Demand

Giraudet L.-G., Guivarch C., Quirion P. (CIRED)

EMF25, Stanford, 04/21/09

Outline

- I. Model
- II. Results
- III. Perspectives

I. Model

IMACLIM-R Hybrid Structure

The Residential Sub Model

Demand for Heating Energy

$$[kWh] \equiv [m^2][kWh / m^2][]$$

Term2: Investment Decision

• Market Share Function (à la CIMS)

$$MS_{i} = \frac{LCC_{i}^{-\nu}}{\sum_{j} LCC_{j}^{-\nu}}$$

Life cycle cost with myopic expectation

 $LCC_i = CINV_i + CENER_i(Pener_t, disc)$

• Heterogeneous discount rates

	Individual dwelling	Collective dwelling
Landlord	4%	6%
Tenant	8%	10%

Term3: Consumption Behavior

Annual heating expenditure (€/m²)

Demand drivers in REF scenario

10

II. Results

EMF Scenarios Adaptations

Regulation case

- Every renovation reaches class C
- Every new construction at « low consumption » level

More energy with less emissions

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

CO2 Emissions from Residential

Less heating but more electrical uses

Residential Electricity Consumption

Policy Effect on Capital Structure and Efficiency

2007 Building Stock in 2050

Policy Effect on « Sufficiency »

Aggregate Service Factor

Rebound effect of Regulation compared to REF: 10%

Main Findings

- Methodology
 - Innovative representation by energy class
 - Model quite pessimistic \rightarrow renovation rate
 - Electricity penetration
- Policy making
 - Potentials in renovation of « thermal wrecks »
 - Separate policy effects on efficiency/sufficiency
 - Regulation generates a rebound effect

III. Perspectives

Thermal use improvement

- Modeling options
 - Endogenous refurbishment rate
 - Induced technical change
 - Intangible costs calibrated with consistent data
- Data improvement: currently working with EDF, ANAH, ADEME, Ministry, CSTB
- Sensitivity analysis

Further steps

- Whole residential uses modeling
 - Hot water \rightarrow conditionnal link to heating
 - Specific electrical uses
 - Other policies: white certificates
- Hard-link to the CGE model
 - Link with other sectors: rent market, building market
 - Budget constraint
 - Utility?

Appendix

Term1: Building Stock

Technologies for Thermal Use

Energy Class Transitions (REF)

2007 Buildings

Demand for mobility

Utility Maximization
$$U = \prod (C_i - bn_i)^{\xi_i} (S_j - bn_j)^{\xi_j}$$

with $S_{Mobility} = CES (PKT_{air}, PKT_{public}, PKT_{cars}, PKT_{non motorized})$
4 Modes

With Revenue and Time Constraint

Findings on Transportation

- Optimistic model for electric car costs and penetration rate
- Car choice very sensitive to oil price
- The energy efficiency indicator does not take into account fuel for the electric car